David Chatto – Head of REMSAFE
ABSTRACT
Isolation of machinery is an everyday occurrence on mine sites, and practices have improved considerably over time. This presentation will explore some of the key advances in isolation
practices over many decades.
Up-to-date isolation-related incident data from Queensland will be presented and examined. It will be suggested that improvement has at best plateaued and that a shift is required in our approach to isolation practices – in particular: a focus on higher-order controls.
Human factors will be identified as the leading ongoing cause of isolation-related incidents. Highly effective, currently available treatment options will be discussed. In particular,
autonomous isolation (often called ‘remote isolation’), will be put forward as a key method of driving step-change improvement in this area. Using James Reason’s model of human error (slips,
lapses, mistakes and violations), it will be shown that autonomous isolation is highly effective in treating all forms of human error.
Case studies will be presented to demonstrate the benefits of autonomous isolation and a recent technical advancement will be introduced to demonstrate the continuing evolution of isolation.
You may also like
- Post explosion atmosphere monitoring:– An industry study into available, low powered, sensors were conducted. The study was to identify commercially available equipment to sample the mine atmosphere post an underground incident.
- Ultra-resilient communication system:– An investigation was undertaken into the feasibility of components for a robust and resilient mine communication network. The network must survive an underground incident and be able to transmit information in and out of an underground mine environment.
- Blast protection (or blast resilience):– The blast protection was evaluated through subjecting different shapes of enclosures to actual blasts, in an explosion propagation tube.
- Navigational aids:– A series of test were undertaken to determine the suitability of using visible light, infra-red as well as radar to aid in self rescue. All test were undertaken in a “dusty”, or low-visibility, environment.