Luke Wilkie, Maintenance Manager, Anglo American Dawson Mine
You may also like
Stuart Sephton
National Plastics & Rubber Pty Ltd
Matthew Downing
Anglo American Dawson Mine
Blair Whitney & Ben Murphy
Coronado Global Resources Inc
Francesco Mele & Joseph Guinea
BMA & JJ&D Innovations
Travis Hitz
Hastings Deering (Australia) Limited
Tom Cobcroft
GM/SSE Capcoal Surface Operations
Dev Gil-Sanchez
Business Improvement Specialist, Anglo American – Capcoal Open Cut
Anthony Manousso
Control Systems Coordinator, Anglo American – Capcoal Open Cut
Bunds are a safety critical control in open pit mining to prevent and mitigate risks associated with heavy vehicle operations. Between 2014-2019 at Capcoal Surface we have had 14 incidents and in Queensland 2012 – 2018, 47 incidents where bunds have stopped uncontrolled vehicles and prevented potentially fatal injuries. At Capcoal we have 100km+ of bunds in the pit, with more than 50 heavy vehicles interacting regularly. Currently the process to monitor & audit the compliance to standard is made via visual inspection with no quantitative process or records.
In a collaboration with SICK sensors we developed a system using laser sensors to scan the bunds and provide a comprehensive measurement including not only height but:
- Roadside facing batter angle.
- Width at the top, if applicable, trapezoidal bunds.
- Distance to high-wall.
Data is transmitted via ethernet to a central data collection system called TDC which then generates a heatmap and a report identifying sections of bund requiring intervention and their criticality.
Some of the benefits of this development, besides measuring all characteristics mentioned before are:
- Is an objective and quantitative process to monitor / audit bunds compliance to standard in real time.
- Cost and time efficient solution as to comply with inspectorate recommendations then survey would be required, incurring in extra cost to audit.
- Visibility across all active bunds and ranking of deficient sections to prioritise as per criticality.
Next is presented an schematic of the sensors installed on a truck and scanning the bunds at both sides.
Josh Leppard
Overburden Supervisor, BMA Saraji Mine
Tragically Saraji Mine had a fatality on New Year’s Eve 2018 involving a bulldozer rolling down an embankment. The first responders to this incident required the use of heavy duty slings and shackles to upright the dozer. This involved personnel traversing down a steep embankment on undulated ground during the night carrying D-shackles that weighed approximately 62kg each, this created a significant manual handling risks to the people involved.
Post incident, Saraji became aware of light weight synthetic couplings that are made specifically for the marine industry that significantly reduced the weight whilst providing exceptional strength properties.
We reached out to the manufacture of the light weight synthetic couplings in New Zealand in an attempt to replicate this technology within the mining industry. By substituting the existing steel D-shackle with a custom made light weight synthetic design, we have reduced the potential of a manual handling incident when recovering surface mobile equipment or the potential for stored energy within the steel to become airborne should the steel D-shackle capacity be exceeded.
The soft couplings were tested to 175,000 kg for a maximum breaking force (MBF) of 510,000 kg without breakage and have a total weight of 8.2 kg compared to the 62 kg steel D-shackles that are normally used.
The synthetic couplings have been successfully trialled on site to extract various pieces of surface mobile equipment. They have been included as mandatory items in the emergency equipment recovery trailer along with other items to aid in the immediate recovery should the need arise.
Glenn Owens
Project Manager, BMA Engineering
Dave Zanette
Project Supervisor, BMA Engineering
The Broadmeadow Proximity Detection (PDS) Project was initiated to address the risk of vehicle to pedestrian and vehicle to vehicle interactions in a low visibility environment. There have been numerous deaths and injuries which have occurred due to workers being contacted or crushed by mobile equipment in the underground environment. Following the fatality at the Moranbah North Coal Mine (2007), a Shuttle car incident at San Juan and the fatality at Escondida in 2016. Broadmeadow is committed to the implementation of an engineering solution. Proximity Detection Systems have the potential to reduce the risk of underground mobile equipment injuries and fatalities.
The project has completed stage 1 trials of a Proximity Detection System (PDS) fitted to vehicles (Shuttle Car (SC), Loader (LHD) and Personnel Transporter (PJB)) designed to detect the presence of a pedestrian or vehicle in a hazardous location around a machine. Should a worker enter this zone, the system will issue a warning signal – a combination of audible and visual alarms – to notify the individual as well as the machine operator of potential danger. The system was also configured on the SC to automatically slow and stop when a pedestrian was detected in the warning and danger zones of the machine. Stage 1 of the trial was conducted both in surface and underground testing areas in isolation from production activities.
The PDS is currently in stage 2 trials at Broadmeadow. During this stage the PDS (with auto slow\stop enabled) has been installed on an operating shuttle car currently in production underground in a Broadmeadow Development panel. This is the first SC in Australia to run in production with a PDS in full auto slow\stop mode.
A LHD fitted with audible and visual alarms is also being trialled underground in a production environment, this trial involve fitting various attachments to the LHD including personnel-baskets, pipe trailer and stone dust pod. Various attachments require configuration changes to the system to ensure the machine zone sizes can grow and shrink dynamically to suit the attached implement or machine speed. One of the most challenging parts of the PDS trials is the application of silent zone technology which enables an operator(s) to work within the fields of the machine in what is designated as a safe area i.e. cab or inside a personnel-basket. This silent zone technology has been applied to a bolter\miner and at Broadmeadow and it effectively makes all operators standing in safe zones on the bolter\miner platform invisible to the shuttle car PDS as it docks to the machine for loading.
During the course of the trials over 200 different vehicle to pedestrian and vehicle to vehicle scenarios have been tested. If a pedestrian comes within 7 to 8 metres of a shuttle car it will slow to 50% speed and if a pedestrian comes within 4 to 5 metres of the shuttle car it will automatically stop before hitting the pedestrian. Feedback from operators has been that the system gives them a greater awareness of machine NO-GO Zones and operators are standing further back from the machine.
The PDS is current installed on the following machines at Broadmeadow:
- Full Auto-Stop Mode – 2 x Shuttle Cars (with a 3rd installation in progress)
- Warning only Mode – 1 x Underground Personnel Transporter, 2 x Underground Loaders (LHDs), 1 x Electric Vehicle, 1 x Moxy Articulated Truck
PDS Tags are currently installed in 180 Caplamps.