

# Review of Dust Control Strategy Optimisation using Real-time Respirable Dust Monitoring

# **Hsin Wei Wu and Stewart Gillies**

Gillies Wu Mining Technology
Usman Khan

Missouri University of Science & Technology





# Outline

- Introduction
- Review of Dust Controls and Monitoring
- Case Studies
- Conclusions and Recommendations





#### Introduction

- Respirable dust is a continuing problem in mines where it adversely affects the safety, health of workers and productivity.
- The recent detection of several Queensland coal miners with black lung or Coal Workers' Pneumoconiosis (CWP) has led to industrial actions at some Queensland coal mines.
- CWP has been a major concern in the U.S. over the last few years despite recorded conformance to exposure level legislation.
- MSHA has recently reduced the shift averaged permissible exposure limit for respirable coal dust.
- From February 2016 MSHA requires Continuous Personal Dust Monitor (CPDM) to measure respirable dust exposure in certain conditions.





#### Recent Australian Longwall Production Records

| Мс   | onthly Production R | ecords    | Annual Production Records                                |                       |            |  |  |
|------|---------------------|-----------|----------------------------------------------------------|-----------------------|------------|--|--|
| Year | Mine                | tonnes    | Year                                                     | Mine                  | tonnes     |  |  |
| 2000 | Oaky Creek          | 772,029   | 2005                                                     | Beltana               | 7,627,644  |  |  |
| 2005 | Beltana             | 955,049   | 2009                                                     | Newlands North        | 8,318,421  |  |  |
| 2009 | Newlands North      | 961,891   | 2015                                                     | Grasstree             | 10,000,000 |  |  |
| 2009 | Oaky North          | 1,146,721 | 2015                                                     | Narrabri (Projected)* | 10,000,000 |  |  |
| 2015 | Grasstree           | 1,200,537 | * projected in July 2015 International Coal News article |                       |            |  |  |



#### **Dust Sources at Longwall**

- Past researches highlight at least six important dust sources on an average longwall production face. These dust sources are
  - intake roadways,
  - outbye conveyor belts,
  - crusher/beam stage loader (BSL),
  - shearer,
  - longwall face support shield (or chock) advance and
  - dust resulting from falling goaf or over pressurisation of the goaf
- Longwall shearer and chocks are the main dust sources on longwall faces representing up to 80 per cent of the total dust make.





# **Longwall Dust Control Approaches**

• Administrative controls or work practices

To minimise the exposure of individual workers by positioning them in the work area in such a way as to limit the time they are exposed to a particular dust source.

#### Engineering controls

To lower the levels of respirable dust in the mine atmosphere by either reducing dust generation or by suppression, dilution, or capturing and containing the dust.





# **Longwall Dust Control Methods**

- Ventilation controls,
- Water sprays mounted on shearer drums,
- Deep cutting,
- Modified cutting sequences,
- Shearer clearer,
- Shearer dust scrubber,
- Water infusion,
- Use of scrubbers at beam stage loader/belt transfer points.





#### **Longwall Dust Control Issues**

- Inadequate air volume and velocity;
- Insufficient water quantity and pressure;
- Poorly designed external water spray systems;
- Lack of dust control at the stage loader and crusher;
- Dust generated during support movement; and
- Cutting sequences that position face workers downwind of the cutting machine.





# **Dust Monitoring**

- The current statuary dust monitoring regime in Australia using a single figure for shift average respirable dust exposure levels.
- This method provides an accurate measurement for the total dust exposure for the period sampled.
- However, it does not always accurately reflect the source, quantity and timing of respirable dust entering the longwall from different dust sources.
- US had a similar statuary dust monitoring approach up until recently. US sampling is using the "portal to portal" approach whereas in Australia it is "cribroom to cribroom".





#### **Recent US Dust Rules**

- Since 1st February 2016, US coal mine operators have been required to use the CPDM to sample for respirable dust on working sections of underground coal mines and other areas.
- In addition, the CPDM must be used to sample air for all Part 90 miners (miners who have evidence of Black Lung).
- US concentration limits for respirable coal mine dust is reduced on 1st August 2016,
  - The overall respirable dust standard in coal mines is reduced from 2.0 to 1.5 mg/m<sup>3</sup> of air.
  - The standard for Part 90 miners and for air used to ventilate places where miners work is reduced from 1.0 to 0.5 mg/m<sup>3</sup>.





#### **Continuous Personal Dust Monitor**







- Enable miners take immediate action to avoid excessive exposure.
- provides more immediate, full-shift exposure data.
- represents a major improvement in respirable dust sampling technology.



#### Case Study – Mine A

- Mine A is a gassy longwall mine with extraction height about 4.0
   m. Typical longwall panels were 200 m wide with 114 chocks and 2.8 to 3.8 km long.
- Ventilation air quantities at longwall production faces were ranging from 70 to 90 m<sup>3</sup>/s. Uni-di shearer cutting was used.
- Detailed real-time dust surveys were taken to assist in evaluating dust sources.
- Survey results show contributions from major dust sources and the cumulative dust levels faced by workers at different locations in the longwall panel.





#### **Real-time shearer positions and dust levels**





#### **Dust readings of different sources**

| Test No | Chock<br>#8 | MG<br>Operator | TG<br>Operator | Chock<br>Operator | Inbye<br>Chock<br>Operator | Chock<br>#110 | Comments                       |
|---------|-------------|----------------|----------------|-------------------|----------------------------|---------------|--------------------------------|
| 1       |             | 1.00           | 1.12           |                   |                            |               | Shadowing MG & TG operators    |
| 2       |             | 1.11           |                | 1.52              |                            |               | Shadowing MG & Chock operators |
| 3       |             |                |                |                   |                            | 3.90          | Fixed position test            |
| 4       |             | 1.53           |                |                   |                            | 4.57          | Shearer Clearer off            |
| 5       |             | 1.58           |                |                   |                            | 4.65          | Shearer Clearer off (repeat)   |
| 6       | 0.89        | 1.29           |                |                   |                            |               | AFC dust only                  |
| 7       | 1.12        | 1.62           |                |                   |                            |               | AFC and Bank Push dust         |
| 8       | 1.64        |                |                |                   | 4.26                       |               | AFC, Shearer & Chock dust      |
| 9       |             | 1.51           |                |                   | 3.18                       |               | Shearer & Chock dusts          |
| 10      |             |                | 1.53           |                   |                            |               | Outside airstream (5 min ave)  |
| 11      |             |                | 1.47           |                   |                            |               | Outside airstream (30 min ave) |
| Average | 1.22        | 1.38           | 1.37           | 1.52              | 3.72                       | 4.37          |                                |



# Case Study – Mine B

- Mine B is also a gassy longwall mine with mining heights ranging from 4.1 to 4.5 m using uni-di shearer cutting.
- Typical longwall panels are 250 m wide using 151 two-leg large and heavy chock shields and about 2.5 to 4.0 km long with twin heading gate roads.
- Over a period of five years, eight series of real-time dust surveys at Mine B's longwall faces were conducted
  - to assess the baseline dust situations and
  - to optimise the effectiveness of various dust controls.





#### **BSL Dust Scrubber performance test results**



- Tests with the scrubber water sprays off and on.
- The overall filtration efficiency is about 47%.
- Filtration efficiency is reduced to about 21% when mining was active.
- When mining is not active, the filtration efficiency is increased to about 78%.



#### **Evaluation of dust situations**

|                                                                                                                                                      | Average Dust Levels (mg/m <sup>3</sup> ) |        |                |                        |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------|----------------|------------------------|--|
|                                                                                                                                                      | Face Q<br>m <sup>3</sup> /s              | Outbye | MG Chock<br>#8 | MG Shearer<br>Operator |  |
| Baseline - Standard                                                                                                                                  | 63.4                                     | 0.28   | 2.54*          | 1.91                   |  |
| Improved Condition 1<br>1.Improved face air quantity<br>2.New finer shearer sprays (50%)<br>3.New sails installed at MG Drive<br>4.Good housekeeping | 71.2                                     | 0.30   | 1.16           | 1.33                   |  |
| <b>Improved Condition 2</b><br>1.Full finer shearer sprays,<br>2.Chock water Mist Venturi system                                                     | 70.5                                     | 0.30   | 0.62           | 0.91                   |  |

\* Unusual local high dust level experienced was a direct result of additional dust created by strata stress loaded MG chocks (No 1 to 5) advancements.



#### Case Study – Mine C US Nonmetal



- Real-time dust sampling done at the mine entry of a longwall mining operation.
- PDM unit placed in the conveyor belt entry to assess the effect of belt operation on dust accumulation.
- The peak value was 7.0 mg/m<sup>3</sup> and average around 4.5 mg/m<sup>3</sup>.
- The belt was not operating at the beginning of measurement.



#### Case Study – Mine D US Metal



- Real-time dust sampling done during face drilling operation.
- A jumbo drill was operating at the face. One diesel powered scalar was nearby.
- Sudden increase in dust level when drilling started at 10:25.
- The peak value was 2.9 mg/m<sup>3</sup> for a 3.5 hour period.
- Air velocity at face was quite low so the dust started accumulating.



#### **Real-time Respirable Dust Monitoring**

- Four case studies with applications of real-time respirable dust monitoring in Australian and US mines were presented.
- Real-time dust sampling technique has particular application for
  - determining high source locations,
  - efficiency of engineering means of dust suppression and
  - other approaches to handling the problem.
- Real-time dust monitoring provides mine operators with comprehensive dust signatures and allow implementation of more efficient controls at individual dust sources.





# **Conclusions and Recommendations**

- Benefits of real-time respirable dust monitoring were presented.
- Real-time monitoring as an engineering tool can evaluate impacts of dust controls effectively and efficiently.
- Shift-averaged dust monitoring will still have its roles but it is unable to assist the optimisation of dust mitigation in a practical way.
- Efficiency of some dust controls can reduce significantly in thick seam mines and under high production conditions.
- High dust levels at belt conveyor were observed in a US nonmetal mine.
- As the current trend is to substantially increase production levels, there is an urgent need for detailed investigation of various dust control options and development of appropriate dust management strategies.

