ACARP Project C23005

Use of plastic metal for temporary repair of flamepath on flameproof equipment used in underground coal mines

Background

- When certified flameproof equipment is inspected and a defect is identified such as corrosion of flamepath or deformation due to trapped cable or washer or a debris. The equipment will need to be repaired.
- In-situ method would be to repair by welding
- This process has risks hot surface, arcs and sparks
- Can it be repaired temporarily without welding?

Poor or no maintenance?

Consequence

Simtars

Objectives of the study

- To determine if it is feasible to use plastic metal for temporary repair of flamepath
- Determine limitations of application and use
- Conduct tests beyond those specified in the protection standards
- Inform industry and regulators of findings
- Establish test criteria for plastic metals
- Establish competency for person undertaking repair

Selection of products

 There are a number of products available that may be suitable for temporary repair of flamepaths

Analysis

- Type of compound
 - liquids (2 part, epoxy plus powder),
 - Putty
- Continuous Operating Temperature (COT) range
- Curing time
- Shelf life
- Compound Property
 - Tensile strength
 - Thermal conductivity
 - Hardness

Selection of suitable enclosure

- Ideal Obtain existing certified enclosure
- Next Best fabricate

Selection of suitable enclosure

- Prepare slots for material testing
- 10mm, 8mm, 6mm (Square), 4mm & 2mm (V-slot)

Prepare material

 Each compound was prepared as per manufacturers specification

Prepare material

 Each compound was prepared and finished such that the surface finish was around 6.3µm

Testing of enclosure

 Testing of fabricated enclosure to prove compliance with IEC 60079-0 & IEC 60079-1 (Reference pressure determination tests)

Testing of enclosure

 Testing of fabricated enclosure to prove compliance with IEC 60079-0 & IEC 60079-1 (Hydrostatic overpressure test)

Material Preparation

Material Preparation

Conditioning of material

- Thermal endurance test
 - 4 weeks at 95°C and 90% RH
 - 24 hours at ambient temperature of 25°C
 - 24 hours at -25°C

- Impact tests on the potting in through holes
- Reference pressure determination tests with the compound (potting)
- Hydrostatic test at 1060 kPa applied for 60 s
- Flame non-transmission tests

Flame non-transmission tests

5 test conducted using hydrogen methane mix

No transmission, however minor erosion of

material

- Flame erosion tests
 - 50 tests conducted using 9.8% methane in air mix

No transmission

- Flame erosion tests
 - Closer inspection

Inside of Enclosure

Other compounds

Next Steps

- Conduct further tests of flamepath that are damaged due to the following:
 - Trapped washer in flange of flameproof enclosure
 - Impact damage on flamepaths (roughly in the middle of flamepath)
 - Test for various sizes and depth
 - Obtain feedback from end users (mines), inspectorate and the OEMs
 - Prepare plastic metal material testing criteria
 - Prepare competency requirements for undertaking repair

Indentations

Washer imprint across the flamepath

Impact damage across the flamepath

Deep stretch across the flamepath

New thin cover plate

Front view of 8 mm thick plate

Back view with indentations

Flamepath damaged by corrosion

Flamepath etched with acid on 8 mm thick cover plate

Flamepath etched with acid on thick cover plate

Conclusions

- Stage 1 Feasibility study indicated that it is possible to repair flamepaths by use of certain plastic metal
- Test criteria is almost established and will be completed at end of Stage 2
- Original Equipment Manufacturer (OEM) must accept before proceeding with temporary repair
- Include in AS/NZS 2290.1 for temporary repair

Interim ACARP Report

- For details, interim ACARP report is available from ACARP project C23005
- http://www.acarp.com.au/report

Any questions?

