Seismic Monitoring of Mines (Predicting and preventing mine collapse)

Ken Liddell, Director Mining Research and Development Centre SIMTARS

Queensland Government

Great state. Great opportunity.

Rio Tinto, Copper Kennecott Mine, Utah, USA. 9 April 2013

© State of Queensland, 2013

Department of Natural Resources and Mines

Rio Tinto, Copper Kennecott Mine, Utah, USA. 10 April 2013

D State of Queensland, 2013

kennecott.com, July 2014

Department of Natural Resources and Mines

What could cause a pit wall to fail?

Slope angle /steepness Height/depth >500m Underground mining activities Blasting activities Complex geologies Ground water pressure/ inundation /weather Vehicle movements

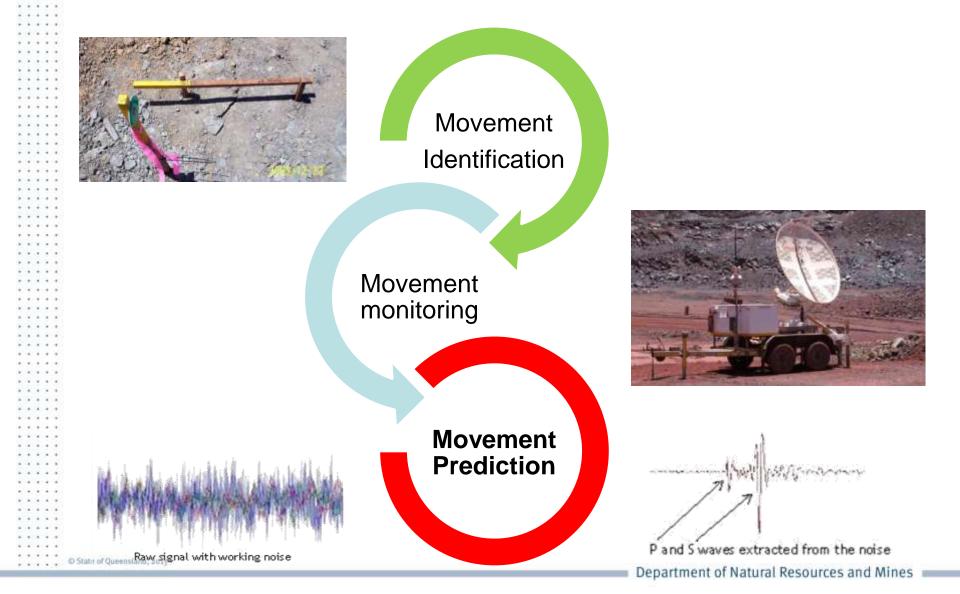
C State of Queensland, 2013

Edge, bench and pad Failures

D State of Queensland, 2013

© State of Queensland, 2013

.


Highwall and slope monitoring options

- Visual monitoring
- 3D visualisation/ assessment
- Use of Tell Tales
- Measuring between pins
- Wire line extensometers

C State of Queensland, 2013

- Prism monitoring of the high wall
- Inclinometers
- Piezometers
- Photogrammetry
- Slope Monitoring Radar

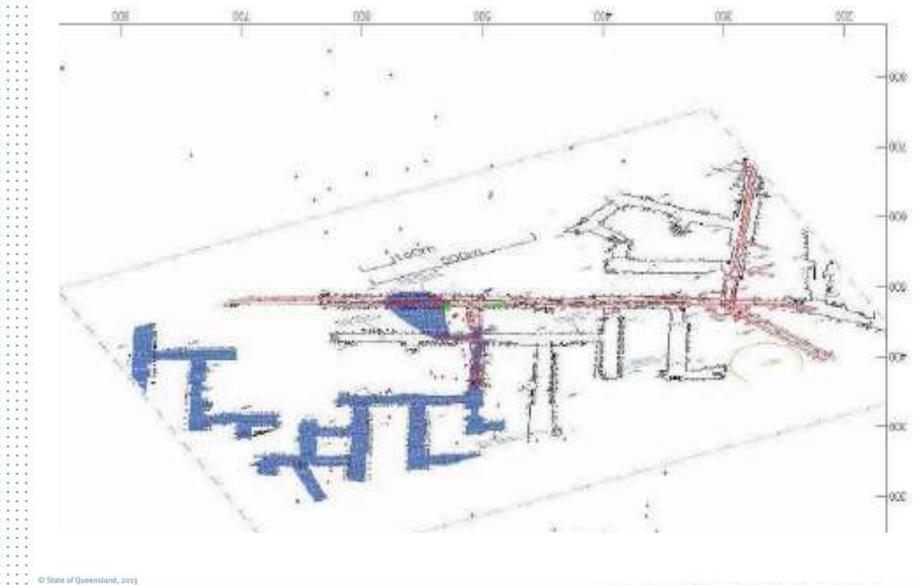
Where does micro-seismic fit in?

Industry experience

- Around 25 open pits had microseismic by 2009
 - (no more recent info)
- All systems required sensor installation in boreholes
- Cable and instrument management is a major issue and lead to static installation configurations
- Focus was on fracture initiation and propagation
 - Brittle fracture failure

D State of Queensland, 2013

• Effective in delivering useful data on the mine behaviour


Hasn't micro-seismic been done ?

- High sensitivity
 - 10⁻¹⁵mm/s

D State of Queensland, 2011

- Effective monitoring range now
 >1km vs ≤150m
- Speed of deployment and redeployment
 - Rapid installation with zero (or very shallow holes) keeping pace with of mining activities
 - Previous generations needed deployment in boreholes \$20-40,000 / bore hole

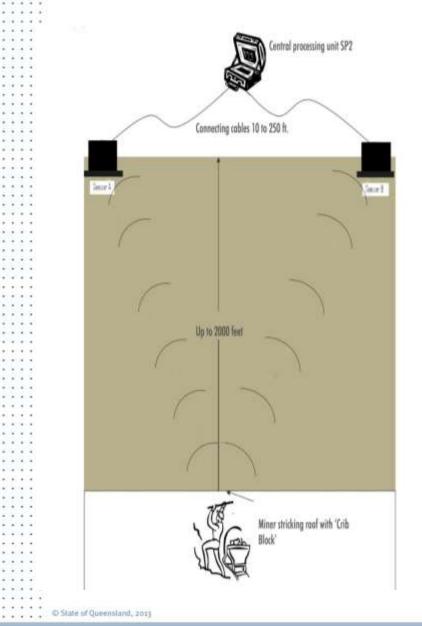
Mapping moving water

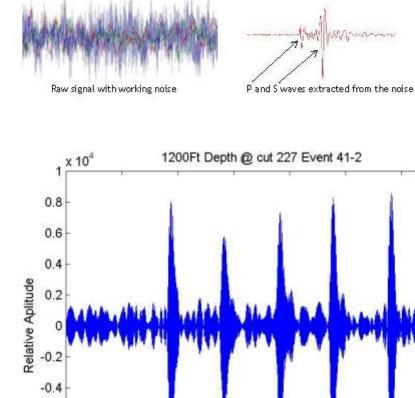
System Configuration

© State of Queensland, 2013

Previous deployments

- 1998 Asfordby, UK with University of Liverpool
- 2013 Deep potash mine


C State of Queensland, 2013


- 2013 Trapped miner exercises
 - University of West Virginia (Heasley)
 - Consol Energy, Federal #2, Alpha Natural Resourses
- 2013 comparative trial against ESG, IMS, Lockheed Martin and Boeing for illicit tunnel detection

Seismic events overlay on mine dxf

Trapped miner

-0.6

-0.8

-1

0

1000

2000

3000

5000

6000

7000

4000

Simtars seismic investigation

- Will a surface deployment deliver results ?
 - Can it be redeployed to keep pace with mining?
- Event localisation accuracy and precision
 - Can we 'tune' the system by generating impulses at surveyed locations
- Will it deliver on the promise of kilometre+ ranges?
- Characterise signal response to normal mining activities and to blasting
- Will the data inform TARPs and alerts

© State of Queensland, 2013

Installation

What is the plan ?

Deploy monitoring system

Characterise events and correlate results and interpretation against real-time systems

Confirm trial partners, test sites and target outcomes

© State of Queensland, 2013

Department of Natural Resources and Mines

Thank you for your attention

Contact details Email: ken.liddell@simtars.com.au T. 073810 6321 M. 0437003828

.

* * * * *

© State of Queensland, 2013