Safety & Health - everyone's business

Using the Operability and Maintainability Analysis Technique to understand equipment design issues

Tristan Cooke (MISHC) Brad Pritchard (Xstrata)

- The Background of OMAT
 - Tristan Cooke
- The use of OMAT on underground mining equipment to identify the relationship of manual tasks risk to design.
 - Brad Pritchard

A new approach

.....to accelerate development and adoption of leading practice designs for exploration and mining equipment to minimise the risk to Health and Safety through a process of Original Equipment Manufacturers (OEM), contractors and end user engagement

Safety & Health - everyone's business

OMAT Applications

- 1. For a <u>mine site</u>, to assess their equipment. This may be to help:
 - Make decisions about purchasing/modification.
 - Investigate incidents.
 - Audit the modification/retrofits.
 - Give feedback to manufacturers/EMERST.
- 2. For <u>OEMs</u>, to help design and build safer equipment through:
 - Leading a priority risk identification and control process and
 - facilitating the engagement with EMERST and mining companies through using a common tool and language.

Safety & Health - everyone's business

Overview of OMAT

Overview of OMAT

Likelihood	Consequence				
	1 Insignificant	2 Minor	3 Moderate	4 Major	5 Catastrophic
5 Certain	High	High	Extreme	Extreme	Extreme
4 Likely	Medium	High	High	Extreme	Extreme
3 Possible	Low	Medium	High	Extreme	Extreme
2 Unlikely	Low	Low	Medium	High	Extreme
1 Rare	Low	Low	Medium	Medium	High

Overview of OMAT

Xstrata North Queensland

•4500 employees (including contactors)

•Mount Isa

- Two UG Copper Mines Enterprise and X41
- 1,800 metres deep
- Concentrator and smelter
- George Fisher underground zinc-lead mine, Black Star Open Cut mine and Handlebar Hill Open Cut mine (care and maintenance)
- Concentrator and smelter
- •Ernest Henry Mining
 - Open cut
 - Concentrator
- Townsville Copper Refinery and Port Operations
 - Cathode refinery and port operations
 - Technology

Bowen Coke

Coking coal to the lead smelter

- Assist in the development of Design Philosophies (manual tasks, access/egress)
- Trial the tool as a potential resource for direct communication with OEMs through EMESRT
- Provide feedback and assist in OMAT development

- Manual task and role specific focus
- Identify tasks that may be contributing to the development of Cumulative Trauma Disorders in maintenance personnel (Diesel Fitters)
- Determine their relationship to LHD units (Mucking Units)
- TORO T11 maintenance activities observed

OMAT - TORO T11

OMAT Overview

- Conducted on site in operating workshop (Underground Copper).
- Team members:
 - Supervisor, Crew members, Occupational Therapist and Graduate Occupational Therapist
- 2 x OMAT assessments conducted:
 - OMAT 1: Weekly scheduled tasks
 - OMAT 2: Engine re-fit tasks
 - Duration: 1 shift/OMAT

OMAT Stage 1: Critical Task Identification

- Weekly checks (OMAT 1):
 - Proactive maintenance task
 - Over 100 tasks identified for initial assessment
- Engine changeover (OMAT 2):
 - Proactive maintenance task
 - 27 task groups identified for initial assessment

OMAT-Critical Task Identification

- Identified 10 Tasks as critical:
 - 1. Pin insertion at boom arm
 - 2. Engine fuel Line checks
 - 3. Induction hose checks and adjustment.
 - 4. Fan and alternator belt checks
 - 5. Coolant level checks, radiator and hydraulic drive motor hoses

- 6. Battery checks
- 7. Drive line checks (bolts secured)
- 8. Wiring checks
- 9. Engine mounting bolt removal and installation
- 10. Air filter checks and changes

Access/Egress

Stage 2: Flow Chart

- Changed steps/boxes as the task performance characteristics changed:
 - Exertion, posture (consistently identified)
 - Component of the task (i.e. lift tool, access working area, establish working posture, tool use, tool removal, etc)
- Detailed step by step descriptions of the task:
 - Written
- Identify which components of the task may be a concern (cumulative and acute injury risks)

Flow Chart

Stage 3: Risk Identification

- Awkward Postures:
 - Drive line checks
 - Wiring and fuel line checks
 - Engine mounting bolts
 - Medium-long duration exposure to postures

• Exertions:

- Pin insertion and removal at boom
- Loosening hose connections to engine
- Loosening bolts (engine mounting bolts)
- Short duration max exertions
- Tool use (manual and energised) :
 - Removal of engine mounting bolts and fixtures (posture and exertion)
 - Manual tool use (posture and exertion)

ess and egress (unit sur the same bay access)

Awkward Postures

Awkward Postures

Awkward Postures

Exertion & Awkward Postures (Tool use)

OMAT (TORO T11) -Access/Egress

•Rear

- First Step
 - Distance
 - Identification and foot placement (poor viewing).
- Transfers on unit
 - Trip Hazards and no clear path (R rear).

OMAT (TORO T11) -Access/Egress

Front

- R grab rails/grip point absent.
- First Step distance large.
- •Egress
 - Awkward first step down.
 - No Grab rails/hand supports
 - Slips/trips/falls
- •Cabin
 - First Step Distance
 - Awkward/reduced space.
 - Operating Position

Manual Tool use: Engine mounting bolts

Stage 4: Solution Options

- Pin Insertion at Boom:
 - Cabin controlled boom mechanism.
 - Sliding brace permanently attached to boom arm.

- Access/Egress
 - Non -slip surfaces around steps.
 - Bilateral grab rails at all access egress points.
 - Additional step/s
 - Step colour differentiation.
 - Lighting on foot pegs/steps.
 - Reflective strips on steps.

Stage 5: Feedback and Action Plan;

- Communicate Outcomes to Workforce.
 - Planning.
- Include outcomes and learning into Design Philosophy development.
 - Completed.
- Presentation of results to EMESRT:
 - Completed.
- Communicate concern areas to OEM through EMESRT.
 - Planning.

OMAT Feedback

- Provides rich, contextual and documented evidence base.
- Facilitates a complex and time consuming process.
- Amalgamates multiple processes into 1 x assessment.
- Time taken and observation in real time environment.

Questions?

