

Pin Stopper for PC1100 Boom Arm Pins

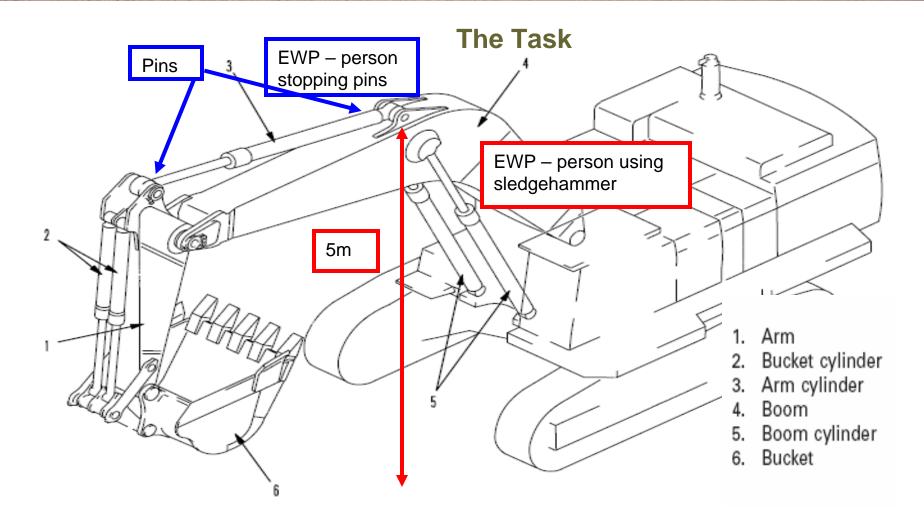
Rio Tinto Aluminium Weipa

Matt Anderson

Heavy Equipment Maintenance Workshop crew leader

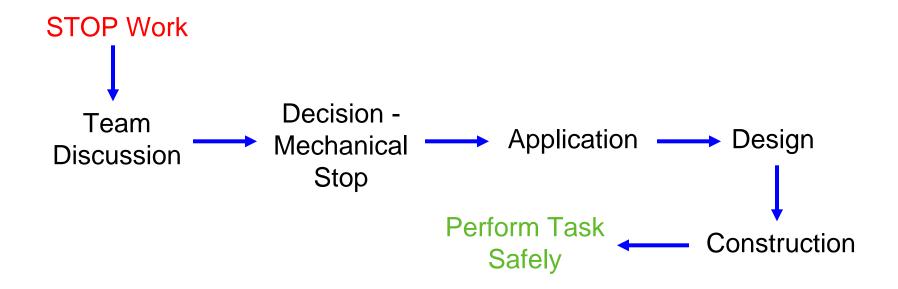
Queensland Mining Industry Health and Safety Conference

Outline


- The Task
- The Problem
- Finding a Solution
- Benefits and Effects
- Transferability Across Industry
- Key Learning

The Task

- A diesel fitter was asked to remove an arm cylinder from the boom of an excavator
- Prior to removing the cylinder, two 98kg pins holding the cylinder in place needed to be removed
- The task usually required two people working on separate elevated work platforms on either side of the boom:
 - An employee would use a sledgehammer to dislodge the pins whilst another would be positioned on the opposite side of the boom to stop the pin's movement
- Two overhead cranes were required

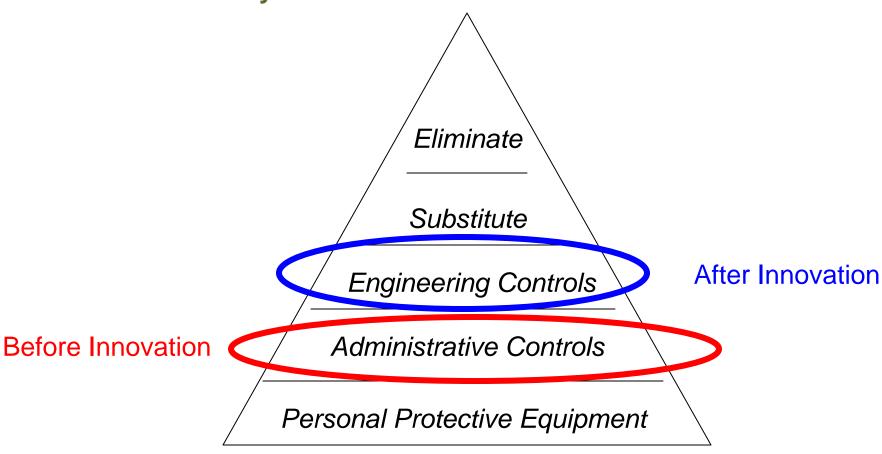


The Problem

- The 98kg pins could very easily shoot out of the boom, either landing in the elevated work platform, fall five metres to the ground or strike the second worker involved.
- The amount of grease on the pin could cause it to easily slip from the sling whilst suspended by the overhead crane.
- Person stopping the pin from falling was in a red/danger zone. This worker had restricted movement in the EWP.
- The size and distance the pins could fall, would generate large amounts of force resulting in injury to a person and damage to the floor or anything it contacted.

Finding a Solution

The Solution



Benefits and Effects

- ✓ Eliminates risk of pins falling
- ✓ Eliminates damage to equipment
- ✓ Reduces risk of injury
- ✓ Removes worker from 'Red/Danger Zone'
- ✓ Eliminates need for second overhead crane
- ✓ Production Benefits
 - Decreased downtime by four hours
 - One person job
- ✓ Uses existing structure
- ✓ Low cost of design and implementation (\$500)

Hierarchy of Control

Risk Assessment

	Consequence	Likelihood	Risk Rating
Before Implementation of Innovation	Major	Moderate	H18
After Implementation of Innovation	Minor	Unlikely	L5
Level of Risk Reduction (Before - After)	13		
Percentage Risk Reduction	72.2 per cent		

Transferability Across Industry

- Innovation could be adapted to suit any pin of similar design eg.
 Komatsu WA900 loaders
- Concept could be applied across any industry to make working at heights safer and reduce the risk of equipment falling whilst working at heights

Learning from Innovation

- An employee had the confidence to STOP work due to unsafe work conditions
- Maintenance team can reduce risks and achieve a safe work environment
- More safety consideration put on working at heights tasks
- Site goal 'zero injuries/illness/incidents' is possible

Thank you for your attention.

