

Controlling Diesel Emissions in U/G Mining within an Evolving Regulatory Structure in Canada and the U.S.

Sean McGinn

Queensland Mining Industry Health and Safety Conference August 7th, 2007 Townsville, Queensland

History and Background

- 1940's first diesels in mines and first USBM regulations Schedule 22 and 24
- 1962 Wagner introduces first LHD
- Widespread U/G use by 1970's

Province of Ontario Diesel Usage

Year	Units		
1977	2092		
1985	1686		
1990	2660		
1995	2250		
2002	1849		

History and Background

- 1986 Formation of Canadian Ad-Hoc Diesel Committee
- Conducted much of the early research
- Led to first U/G tests of ceramic DPF filters
- Developed respirable combustible dust (RCD) method for DPM sampling
- Recommended RCD exposure limit of 1.5 mg/m³
- Was adopted by several Canadian provinces and remains in effect today for some

DEEP Chronology

Mar. '95 – ACGIH published intention to set DPM TLV at 0.15 mg/m3

Aug. '95 – INCO people met and saw no way to sample or analyze at that level

Sept. '95 – contacted U.S.B.M., proposed 3 year consortium

Oct. '95 – MSHA proposal – non-coal RCD at 0.3 mg/m3, very tough numbers

Feb. '96 – Dr. Conard Presented to ACGIH the shortcomings of evidence used - - ACGIH responded – no concern for practicality and problems

Mar. '96 – Canadian Ad Hoc Diesel Committee met and set up steering committee

June '96 – Scope of Work sent out for comment

Jan. '97 – Detailed program finalized, many presentations made over 5 mo.

1. Try to convince ACGIH to raise the DPM TLV before adoption.

2. Start research program to investigate ways of analysis and control options.

Note that the research must include Provincial Gov't.s because they are the ones that might adopt the TLVs unless they know the problems.

DEEP Philosophy

- There must be collaboration between researchers
- Labour and government must be full partners in planning, execution and interpretation of projects
- Specific interests of certain mines will be taken into account
- Technology transfer and training of industry personnel in the field is a key benefit

DEEP Projects

www.deep.org

Total Budget \$2.5M

Canadian Provincial Regulations

McGinn | Integration

Province	DPM mg/m ³	CO	CO2	NO	NO ₂	SO ₂	Engine Certification
British	1.5	25	5,000	25	3	2	CSA
Columbia							
Alberta		25	5,000	25	3	2	CSA
Saskatchewan		25	5,000	25	2	2	
Manitoba	ACGIH	20	5,000	25	3	2	CSA / MSHA
Ontario	1.5	25	5,000	25	3	2	
Quebec	0.6	35	5,000	25	3	2	CSA / MSHA
New Brunswick	1.5	25	5,000	25	3	2	CSA / MSHA
Nova Scotia	1.5	25	5,000	25	3	2	CSA / MSHA
Newfoundland	ACGIH	25	5,000	25	3	2	
NWT Nunavut	1.5	25	5,000	25	3	2	
Yukon	1.5	50	5,000	25	5	5	CSA

U.S. Regulations - MSHA

DPM Rule

Date	Limit mg/m ³	DPM as	Interim / Final
January, 2001	0.4	TC	Interim (not enforced)
July, 2003	0.4	TC	Interim (enforced)
May, 2006	0.308	EC	Interim
January, 2007	0.350	ТС	Interim
May 2008	0.160	ТС	Final

Ambient Gas TLV's

- CO 50 ppm
- CO₂ 5,000 ppm
- NO 25 ppm
- $NO_2 5$ ppm (2 ppm for coal)

Note:

May 2008 Final Rule will have a conversion factor for and enforcement on EC

4

McGinn | Integration

McGinn | Integration

RCD - Average Yearly Concentration

B. Rubeli, Natural Resources Canada – CANMET, 2006

DPM Concentrations – U.S.A.

MSHA 31 mine study DPM concentrations (mg/m³)

McGinn | Integration

	Metal	Stone	Trona	Other
No. of samples	116	105	54	83
Minimum	0.46	0.16	0.20	0.27
Maximum	2.581	1.845	0.331	1.210
Median	0.491	0.331	0.82	0.341
Mean	0.610	0.465	0.94	0.359

MSHA baseline study DPM concentrations (mg/m³)

	Metal	Stone	Other N/M	Trona	Total
No. of samples	284	689	196	25	1,194
Maximum	2.532	3.724	1.20	0.509	3.724
Median	0.339	0.186	0.185	0.102	0.218
Mean	0.444	0.295	0.243	0.132	0.318

Engine Certification – E.P.A.

McGinn | Integration

Note: Tier 1 Non-road initial phase-in was 1996

Engine Certification – CANMET

Microsoft xcel Workshee

Engine Certification – MSHA

Microsoft xcel Workshee

Emissions Controls

	Typical Emission Reductions (%)				
Constituent	DOC	DPF	CDPF	SCR	Water Scrubber
CO2	0	0	0	0	0
CO	60 - 80	0	60 - 80	0	0
HC	60 - 80	0	60 - 80	0	0
NO	0	0	0	60 - 80	0
NO2	0 or increase	0	0 or increase	60 - 80	0
SO2	0	0	0	0	0
DPM	20 - 30	85 - 95	85 - 95	0	20 - 30

DOC = Diesel Oxidation Catalyst

- DPF = Diesel Particulate Filter
- CDPF = Catalyzed Diesel Particulate Filter

Identification - External

- DOC's can be housed alone, built into a muffler body or put in series with a muffler
- DPF's are generally larger and more complex systems than DOC's

McGinn | Integration

DOC

DPF

Flow Through Filter

Turbo Boost Press	28	psi
Intake Restriction	7	inches water
Backpressure	10	inches water
Fuel Pressure	65	psi

Interpretation - DOC

McGinn | Integration

- Benefits vs Drawbacks
- Glass full of water" analogy
- DOC's are beneficial on some applications but are NOT for EVERY diesel engine working U/G

Diesel Particulate Filters

McGinn | Integration

Capable of >90% efficiency Expensive and maintenance intensive Dependent on duty cycle and mtce NO₂ slip can be a problem

DEEP Brunswick DPF Project

www.deep.org

Isolated Zone Study

DEEP Maintenance Project

www.deep.org

McGinn | Integration

Deutz BF4M1013
Leaks in charge side of intake
CO Reduction 66%
DPM Reduction 53%

Maintenance – Six Systems

Engine specific PM's
Quantified results
Emissions
Power, pressures, temperatures, etc.
Measure-Measure-Measure
Baseline and Control

McGinn | Integration

- INTAKE
- EXHAUST
- FUEL INJECTION
- COOLING
- LUBRICATION
- FUEL HANDLING

Summary – MSHA and the U.S.

- Non-compliance can close you down
- Success based on ability to adapt to change – not technology!
- Emissions has top priority
- The Stillwater experience

Summary – Canada

Regulations are less strict than U.S.

- Vent rates are higher
- Industry is more proactive less confrontational
- Ethical issue rather than regulatory
- DEEP has had a positive impact encouraging mines to embrace new technologies and best practices

Thank you!

www.deep.org

- www.dieselnet.com
- http://www.cdc.gov/niosh/mining/topics/topicpage2.htm
- http://www.msha.gov/01-995/Dieselpartmnm.htm